UNISeC: Inspection, Separation, and Classification of Underwater Acoustic Noise Point Sources

نویسنده

  • Mehdi Rahmati
چکیده

Advancements in oceanic research have resulted in a plethora of activities such as undersea oil/gas exploration, environmental monitoring, sonar-based coastal surveillance, which have each increased the acoustic noise levels in the ocean and have raised concerns in the scientific community about the effect of human-generated sounds on marine life. Knowledge of the statistical characteristics of noise sources and their spatial distribution is paramount for understanding the impact on marine life as well as for regulating and policing such activities. Furthermore, studies have shown that assuming the underwater noise probability density function to be Gaussian, exponential, or Weibull is often not valid; therefore, statistically profiling the sources of the ambient noise is also essential to improve the performance of acoustic communication systems in the harsh underwater environment. In this paper, a novel solution based on the blind source separation method is proposed to enable separation of underwater acoustic noise point sources in the presence of channel propagation multipath. The proposed Underwater Noise Inspection, Separation, and Classification (UNISeC) system performs several preand postprocessing steps forming a novel gray-box model. Assuming there is no prior information on the noise sources, UNISeC estimates the number of such sources as well as characterizes and classifies them via a recursive pilot-aided probingmethod while minimizing the environmental acoustic contamination.A correlation-based characterization as well as power spectral density based classification approaches are investigated to verify the proposed method. Several scenarios are also presented and evaluated in detail via simulations.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of Underwater Ambient Noise on Quadraphase Phase-shift Keying Acoustic Sensor Network Links in Extremely Low Frequency Band

This study evaluates the impact of underwater ambient noise using seven real noise samples; Dolphin, Rain, Ferry, Sonar, Bubbles, Lightning, and Outboard Motor in three frequency ranges in extremely low frequency (ELF) band. The ELF band is the most significant bandwidth for underwater long-range communication. ELF band which is extended from 3 to 3000 Hz clearly, faces bandwidth limitation. Me...

متن کامل

Parallel implementation of underwater acoustic wave propagation using beamtracing method on graphical processing unit

The mathematical modeling of the acoustic wave propagation in seawater is the basis for realizing goals such as, underwater communication, seabed mapping, advanced fishing, oil and gas exploration, marine meteorology, positioning and explore the unknown targets within the water. However, due to the existence of various physical phenomena in the water environment and the various conditions gover...

متن کامل

Effect of porosity on the characteristics of underwater acoustic sound absorbers using theoretical models‎

Porous materials have good acoustic damping characteristics over a wide frequency range. As for sound waves, many small-scale pores in the coating materials can convert underwater-coating to rough surfaces. The main property of porous absorbents is their resistance against incident sound wave that leads to damping effect. From a physical point of view, damping occurs due to friction between flu...

متن کامل

Statistical Evaluation of the Underwater Detection

Statistical evaluation of the passive structure for the vessel detection is considered. The passive detection structure is based on the statistical likelihood ratio test and on the Neyman-Pearson statistical criterion. The assumption is that a vessel is approximately so-called noisy vessel. It means that the underwater acoustic vessel noise is approximately a stationary ergodic stochastic zero ...

متن کامل

Acoustic correlated sources direction finding in the presence of unknown spatial correlation noise

In this paper, a new method is proposed for DOA estimation of correlated acoustic signals, in the presence of unknown spatial correlation noise. By generating a matrix from the signal subspace with the Hankel-SVD method, the correlated resource information is extracted from each eigen-vector. Then a joint-diagonalization  structure is constructed of the signal subspace and basis it, independent...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017